Перевод: с русского на все языки

со всех языков на русский

получатель сообщения данных

  • 1 получатель сообщения данных

    1. message recipient

     

    получатель сообщения данных
    получатель сообщения
    Человек и (или) устройство, для которых предназначено сообщение данных.
    [ ГОСТ 17657-79 ]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > получатель сообщения данных

  • 2 получатель

    Русско-английский большой базовый словарь > получатель

  • 3 широковещательное объектно-ориентированное сообщение о событии на подстанции

    1. GOOSE
    2. generic object oriented substation event

     

    GOOSE-сообщение
    -

    [Интент]

    широковещательное объектно-ориентированное сообщение о событии на подстанции

    Широковещательный высокоскоростной внеочередной отчет, содержащий статус каждого из входов, устройств пуска, элементов выхода и реле, реальных и виртуальных.
    Примечание. Этот отчет выдается многократно последовательно, как правило, сразу после первого отчета с интервалами 2, 4, 8,…, 60000 мс. Значение задержки первого повторения является конфигурируемым. Такой отчет обеспечивает выдачу высокоскоростных сигналов отключения с высокой вероятностью доставки.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    общие объектно-ориентированные события на подстанции
    -
    [ ГОСТ Р МЭК 61850-7-2-2009]

    GOOSE
    Generic Object Oriented Substation Event
    (стандарт МЭК 61850-8-1)
    Протокол передачи данных о событиях на подстанции.
    Один из трех протоколов передачи данных, предлагаемых к использованию в МЭК 61850.
    Фактически данный протокол служит для замены медных кабельных связей, предназначенных для передачи дискретных сигналов между устройствами.
    [ Цифровые подстанции. Проблемы внедрения устройств РЗА]

    EN

    generic object oriented substation event
    on the occurrence of any change of state, an IED will multicast a high speed, binary object, Generic Object Oriented Substation Event (GOOSE) report by exception, typically containing the double command state of each of its status inputs, starters, output elements and relays, actual and virtual.

    This report is re-issued sequentially, typically after the first report, again at intervals of 2, 4, 8…60000 ms. (The first repetition delay value is an open value it may be either shorter or longer).

    A GOOSE report enables high speed trip signals to be issued with a high probability of delivery
    [IEC 61850-2, ed. 1.0 (2003-08)]

    До недавнего времени для передачи дискретных сигналов между терминалами релейной защиты и автоматики (РЗА) использовались дискретные входы и выходные реле. Передача сигнала при этом осуществляется подачей оперативного напряжения посредством замыкания выходного реле одного терминала на дискретный вход другого терминала (далее такой способ передачи будем называть традиционным).
    Такой способ передачи информации имеет следующие недостатки:

    • необходимо большое количество контрольных кабелей, проложенных между шкафами РЗА,
    • терминалы РЗА должны иметь большое количество дискретных входов и выходных реле,
    • количество передаваемых сигналов ограничивается определенным количеством дискретных входов и выходных реле,
    • отсутствие контроля связи между терминалами РЗА,
    • возможность ложного срабатывания дискретного входа при замыкании на землю в цепи передачи сигнала.

    Информационные технологии уже давно предоставляли возможность для передачи информации между микропроцессорными терминалами по цифровой сети. Разработанный недавно стандарт МЭК 61850 предоставил такую возможность для передачи сигналов между терминалами РЗА.
    Стандарт МЭК 61850 использует для передачи данных сеть Ethernet. Внутри стандарта МЭК 61850 предусмотрен такой механизм, как GOOSE-сообщения, которые и используются для передачи сообщений между терминалами РЗА.
    Принцип передачи GOOSE-сообщений показан на рис. 1.

    5683

    Устройство-отправитель передает по сети Ethernet информацию в широковещательном диапазоне.
    В сообщении присутствует адрес отправителя и адреса, по которым осуществляется его передача, а также значение сигнала (например «0» или «1»).
    Устройство-получатель получит сообщение, а все остальные устройства его проигнорируют.
    Поскольку передача GOOSE-сообщений осуществляется в широковещательном диапазоне, т.е. нескольким адресатам, подтверждение факта получения адресатами сообщения отсутствует. По этой причине передача GOOSE-сообщений в установившемся режиме производится с определенной периодичностью.
    При наступлении нового события в системе (например, КЗ и, как следствие, пуска измерительных органов защиты) начинается спонтанная передача сообщения через увеличивающиеся интервалы времени (например, 1 мс, 2 мс, 4 мс и т.д.). Интервалы времени между передаваемыми сообщениями увеличиваются, пока не будет достигнуто предельное значение, определяемое пользователем (например, 50 мс). Далее, до момента наступления нового события в системе, передача будет осуществляется именно с таким периодом. Указанное проиллюстрировано на рис. 2.

    5684

    Технология повторной передачи не только гарантирует получение адресатом сообщения, но также обеспечивает контроль исправности линии связи и устройств – любые неисправности будут обнаружены по истечении максимального периода передачи GOOSE-сообщений (с точки зрения эксплуатации практически мгновенно). В случае передачи сигналов традиционным образом неисправность выявляется либо в процессе плановой проверки устройств, либо в случае неправильной работы системы РЗА.

    Еще одной особенностью передачи GOOSE-сообщений является использование функций установки приоритетности передачи телеграмм (priority tagging) стандарта Ethernet IEEE 802.3u, которые не используются в других протоколах, в том числе уровня TCP/IP. То есть GOOSE-сообщения идут в обход «нормальных» телеграмм с более высоким приоритетом (см. рис. 3).

    5685


    Однако стандарт МЭК 61850 декларирует передачу не только дискретной информации между терминалами РЗА, но и аналоговой. Это означает, что в будущем будет иметься возможность передачи аналоговой информации от ТТ и ТН по цифровым каналам связи. На данный момент готовых решений по передаче аналоговой информации для целей РЗА (в рамках стандарта МЭК 61850) ни один из производителей не предоставляет.
    Для того чтобы использовать GOOSE-сообщения для передачи дискретных сигналов между терминалами РЗА необходима достаточная надежность и быстродействие передачи GOOSE-сообщений. Надежность передачи GOOSE-сообщений обеспечивается следующим:

    • Протокол МЭК 61850 использует Ethernet-сеть, за счет этого выход из строя верхнего уровня АСУ ТП и любого из устройств РЗА не отражается на передаче GOOSE-сообщений оставшихся в работе устройств,
    • Терминалы РЗА имеют два независимых Ethernet-порта, при выходе одного из них из строя второй его полностью заменяет,
    • Сетевые коммутаторы, к которым подключаются устройства РЗА, соединяются в два независимых «кольца»,
    • Разные порты одного терминала РЗА подключаются к разным сетевым коммутаторам, подключенным к разным «кольцам»,
    • Каждый сетевой коммутатор имеет дублированное питание от разных источников,
    • Во всех устройствах РЗА осуществляется постоянный контроль возможности прохождения каждого сигнала. Это позволяет автоматически определить не только отказы цифровой связи, но и ошибки параметрирования терминалов.

    5686

    На рис. 4 изображен пример структурной схемы сети Ethernet (100 Мбит/c) подстанции. Отказ в передаче GOOSE-сообщения от одного устройства защиты другому возможен в результате совпадения как минимум двух событий. Например, одновременный отказ двух коммутаторов, к которым подключено одно устройство или одновременный отказ обоих портов одного устройства. Могут быть и более сложные отказы, связанные с одновременным наложением большего количества событий. Таким образом, единичные отказы оборудования не могут привести к отказу передачи GOOSEсообщений. Дополнительно увеличивает надежность то обстоятельство, что даже в случае отказа в передаче GOOSE-сообщения, устройство, принимающее сигнал, выдаст сигнал неисправности, и персонал примет необходимые меры для ее устранения.

    Быстродействие.
    В соответствии с требованиями стандарта МЭК 61850 передача GOOSE-сообщений должна осуществляться со временем не более 4 мс (для сообщений, требующих быстрой передачи, например, для передачи сигналов срабатывания защит, пусков АПВ и УРОВ и т.п.). Вообще говоря, время передачи зависит от топологии сети, количества устройств в ней, загрузки сети и загрузки вычислительных ресурсов терминалов РЗА, версии операционной системы терминала, коммуникационного модуля, типа центрального процессора терминала, количества коммутаторов и некоторых других аспектов. Поэтому время передачи GOOSE-сообщений должно быть подтверждено опытом эксплуатации.
    Используя для передачи дискретных сигналов GOOSE-сообщения необходимо обращать внимание на то обстоятельство, что при использовании аппаратуры некоторых производителей, в случае отказа линии связи, значение передаваемого сигнала может оставаться таким, каким оно было получено в момент приема последнего сообщения.
    Однако при отказе связи бывают случаи, когда сигнал должен принимать определенное значение. Например, значение сигнала блокировки МТЗ ввода 6–10 кВ в логике ЛЗШ при отказе связи целесообразно установить в значение «1», чтобы при КЗ на отходящем присоединении не произошло ложного отключения ввода. Так, к примеру, при проектировании терминалов фирмы Siemens изменить значение сигнала при отказе связи возможно с помощью свободно-программируемой CFCлогики (см. рис. 5).

    5687

    К CFC-блоку SI_GET_STATUS подводится принимаемый сигнал, на выходе блока мы можем получить значение сигнала «Value» и его статус «NV». Если в течение определенного времени не поступит сообщение со значением сигнала, статус сигнала «NV» примет значение «1». Далее статус сигнала и значение сигнала подводятся к элементу «ИЛИ», на выходе которого будет получено значение сигнала при исправности линии связи или «1» при нарушении исправности линии связи. Изменив логику, можно установить значение сигнала равным «0» при обрыве связи.
    Использование GOOSE-сообщений предъявляет специальные требования к наладке и эксплуатации устройств РЗА. Во многом процесс наладки становится проще, однако при выводе устройства из работы необходимо следить не только за выводом традиционных цепей, но и не забывать отключать передачу GOOSE-сообщений.
    При изменении параметрирования одного устройства РЗА необходимо производить загрузку файла параметров во все устройства, с которыми оно было связано.
    В нашей стране имеется опыт внедрения и эксплуатации систем РЗА с передачей дискретных сигналов с использованием GOOSE-сообщений. На первых объектах GOOSE-сообщения использовались ограниченно (ПС 500 кВ «Алюминиевая»).
    На ПС 500 кВ «Воронежская» GOOSEсообщения использовались для передачи сигналов пуска УРОВ, пуска АПВ, запрета АПВ, действия УРОВ на отключение смежного элемента, положения коммутационных аппаратов, наличия/отсутствия напряжения, сигналы ЛЗШ, АВР и т.п. Кроме того, на ОРУ 500 кВ и 110 кВ ПС «Воронежская» были установлены полевые терминалы, в которые собиралась информация с коммутационного оборудования и другая дискретная информация с ОРУ (рис. 6). Далее информация с помощью GOOSE-сообщений передавалась в терминалы РЗА, установленные в ОПУ подстанции (рис. 7, 8).
    GOOSE-сообщения также были использованы при проектировании уже введенных в эксплуатацию ПС 500 кВ «Бескудниково», ПС 750 кВ «Белый Раст», ПС 330кВ «Княжегубская», ПС 220 кВ «Образцово», ПС 330 кВ «Ржевская». Эта технология применяется и при проектировании строящихся и модернизируемых подстанций ПС 500 кВ «Чагино», ПС 330кВ «Восточная», ПС 330 кВ «Южная», ПС 330 кВ «Центральная», ПС
    330 кВ «Завод Ильич» и многих других.
    Основные преимущества использования GOOSE-сообщений:

    • позволяет снизить количество кабелей вторичной коммутации на ПС;
    • обеспечивает лучшую помехозащищенность канала связи;
    • позволяет снизить время монтажных и пусконаладочных работ;
    • исключает проблему излишнего срабатывания дискретных входов терминалов из-за замыканий на землю в цепях оперативного постоянного тока;
    • убирает зависимость количества передаваемых сигналов от количества дискретных входов и выходных реле терминалов;
    • обеспечивает возможность реконструкции и изменения связей между устройствами РЗА без прокладки дополнительных кабельных связей и повторного монтажа в шкафах;
    • позволяет использовать МП терминалы РЗА с меньшим количеством входов и выходов (уменьшение габаритов и стоимости устройства);
    • позволяет контролировать возможность прохождения сигнала (увеличивается надежность).

    Безусловно, для окончательных выводов должен появиться достаточный опыт эксплуатации. В настоящее время большинство производителей устройств РЗА заявили о возможности использования GOOSEсообщений. Стандарт МЭК 61850 определяет передачу GOOSE-сообщений между терминалами разных производителей. Использование GOOSE-сообщений для передачи дискретных сигналов – это качественный скачок в развитии систем РЗА. С развитием стандарта МЭК 61850, переходом на Ethernet 1 Гбит/сек, с появлением новых цифровых ТТ и ТН, новых выключателей с возможностью подключения их блока управления к шине процесса МЭК 61850, эффективность использования GOOSE-сообщений намного увеличится. Облик будущих подстанций представляется с минимальным количеством контрольных кабелей, с передачей всех сообщений между устройствами РЗА, ТТ, ТН, коммутационными аппаратами через цифровую сеть. Устройства РЗА будут иметь минимальное количество выходных реле и дискретных входов

    [ http://romvchvlcomm.pbworks.com/f/goosepaper1.pdf]


    В стандарте определены два способа передачи данных напрямую между устройствами: GOOSE и GSSE. Это тоже пример наличия двух способов для реализации одной функции. GOOSE - более новый способ передачи сообщений, разработан специально для МЭК 61850. Способ передачи сообщений GSSE ранее присутствовал в стандарте UCA 2.0, являющимся одним из предшественников МЭК 61850. По сравнению с GSSE, GOOSE имеет более простой формат (Ethernet против стека OSI протоколов) и возможность передачи различных типов данных. Вероятно, способ GSSE включили в МЭК 61850 для того, чтобы производители, имеющие в своих устройствах протокол UCA 2.0, могли сразу декларировать соответствие МЭК 61850. В настоящее время все производители используют только GOOSE для передачи сообщений между устройствами.
    Для выбора списка передаваемых данных в GOOSE, как и в отчѐтах, используются наборы данных. Однако тут требования уже другие. Время обработки GOOSE-сообщений должно быть минимальным, поэтому логично передавать наиболее простые типы данных. Обычно передаѐтся само значение сигнала и в некоторых случаях добавляется поле качества. Метка времени обычно включается в набор данных.
    ...
    В устройствах серии БЭ2704 в передаваемых GOOSE-сообщениях содержатся данные типа boolean. Приниматься могут данные типа boolean, dbpos, integer.
    Устоявшаяся тенденция существует только для передачи дискретной информации. Аналоговые данные пока передают немногие производители, и поэтому устоявшаяся тенденция в передаче аналоговой информации в данный момент отсутствует.
    [ Источник]


     

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > широковещательное объектно-ориентированное сообщение о событии на подстанции

  • 4 протокол Modbus RTU

    1. Modbus RTU protocol

     

    протокол Modbus RTU
    -
    [Интент]

    3.5.1. Протокол MODBUS

    Протокол Modbus был предложен в 1979 году компанией Modicon. Он должен был служить протоколом реализации внутренних коммуникаций «точка-точка» между ПЛК Modicon и панелью программирования, предназначенной для ввода программ в этот ПЛК. Протокол Modbus построен по принципу открытой системы.

    Область применения этого протокола не ограничивается только промышленной автоматизацией, Modbus применяется во многих других областях, включая системы автоматизации зданий.

    Протокол Modbus предназначен для использования в сетевых структурах нескольких разновидностей, в том числе в разработанной компанией Modicon одноранговой сети Modbus Plus.

    Modbus представляет собой протокол, построенный по принципу master-slave (ведущий-ведомый). Modbus допускает наличие в структуре только одного ведущего устройства и от 1 до 247 ведомых. В качестве ведомого устройства обычно выступает ПЛК. Роль ведущего устройства обычно играет либо панель программирования, либо главный компьютер.

    Идеология протокола такова, что ведущему устройству адрес не присваивается, а ведомые пронумерованы от 1 до 247.

    Адрес «0» зарезервирован в качестве адреса широковещательной передачи сообщений, предназначенных всем ведомым устройствам. Такое сообщение получают все ведомые устройства, но ответ на него не предусмотрен.

    Сообщения-команды, исходящие от ведущего устройства, именуются запросами, а ответные сообщения, присылаемые ведомым устройством, ответами. Упрощенная структура формата сообщения, как запроса, так и ответа, показана ниже:

    Адрес устройства Код функции Данные Контрольная сумма

    Ведущее устройство не имеет адреса вообще, поэтому в поле адреса всегда указывается номер ведомого устройства. Если это запрос, то он направляется ведомому устройству с указанным адресом. Если сообщение является ответом, то оно поступает от ведомого устройства с проставленным в этом поле его адресом. Сообщение-запрос всегда содержит тот или иной код функции, например, код 03 – это функция «Чтение регистров хранения».

    В последнем поле каждого сообщения помещается код ошибки, формируемый устройством-отправителем, так что устройство-получатель может проверить целостность пришедшего сообщения.

    Протокол Modbus рассчитан на два режима последовательной передачи данных. Один именуется ASCII (American Standard Code for Information Interchange), а второй – режимом RTU (Remote Terminal Unit). Термин RTU ведет происхождение от SCADA-систем (Supervisor Control and Data Acquisition), в которых ведущее устройство, именуемое CTU (Central Terminal Unit), обменивается информацией с несколькими удаленными устройствами (RTU), находящимися от него на определенных расстояниях.

    Для каждого режима определена структура кадров сообщений и их синхронизация. В процессе передачи по каналам последовательной связи оба режима предусматривают асинхронную передачу, при которой имеется заранее определенная структура кадра и символы пересылаются последовательно – по одному в каждый момент.

    В табл. 3.11 и 3.12 показана отправка символа при использовании асинхронной последовательной передачи данных для обоих режимов с битом четности или без него.

    Таблица 3.11. Структура кадра для 7-битового режима ASCII
    Стартовый бит Бит четности Стоповый бит
    Стартовый бит Стоповый бит Стоповый бит

    Таблица 3.12. Структура кадра для 8-битового режима RTU
    Стартовый бит Бит четности Стоповый бит
    Стартовый бит Стоповый бит Стоповый бит

    Каждый символ передается как последовательность битов, причем время, затрачиваемое на передачу одного бита, обратно пропорционально скорости передачи данных. Например, при скорости 9600 бод время передачи 1 бита равно 104,1 мкс. Когда информация не передается, линии связи находится в маркерном (marking) состоянии. Противоположное ему состояние именуется заполненным (spacing). Когда линия переходит в заполненное состояние для побитовой передачи данных, каждому символу предшествует стартовый бит, а в конце идет один стоповый бит или больше, после этого линия возвращается в маркерное состояние.

    В промежутке между стартовым и стоповым битами осуществляется передача 7, в режиме ASCII, или 8, в режиме RTU, битов, составляющих символ, причем первым посылается младший бит (LSB). После символа идет либо бит четности, либо еще один стоповый бит. При этом пользователь имеет возможность выбирать один из трех вариантов: контроль на четность, или на нечетность, либо отсутствие контроля. В режиме ASCII передача одного символа требует передачи 10 битов, а в режиме RTU – 11. При асинхронной связи символы могут пересылаться либо вплотную, либо с временным интервалом между ними. Последовательности символов, образующих сообщения, имеют различные структуры в зависимости от режима – ASCII или RTU.

    [ Источник]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > протокол Modbus RTU

См. также в других словарях:

  • получатель сообщения данных — получатель сообщения Человек и (или) устройство, для которых предназначено сообщение данных. [ГОСТ 17657 79 ] Тематики передача данных Синонимы получатель сообщения EN message recipient …   Справочник технического переводчика

  • Получатель сообщения данных — 3. Получатель сообщения данных Получатель сообщения Е. Message recipient Человек и (или) устройство, для которых предназначено сообщение данных Источник: ГОСТ 17657 79: Передача данных. Термины и определения оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • Получатель сообщения данных — 1. Человек и (или) устройство, для которых предназначено сообщение данных Употребляется в документе: ГОСТ 17657 79 Передача данных. Термины и определения …   Телекоммуникационный словарь

  • получатель — 3.1 получатель (acquirer): Сторона, которая получает или которой предоставляют продукт или услугу от поставщика. Примечание Другими обычно используемыми терминами для обозначения получателя являются покупатель, потребитель, закупщик. Получатель… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 17657-79: Передача данных. Термины и определения — Терминология ГОСТ 17657 79: Передача данных. Термины и определения оригинал документа: 78. n кратная ошибка в цифровом сигнале данных n кратная ошибка Е. n fold error Группа из и ошибок в цифровом сигнале данных, при которой ошибочные единичные… …   Словарь-справочник терминов нормативно-технической документации

  • Код аутентичности сообщения — MAC (имитовставка, англ. message authentication code  код аутентичности сообщения) средство обеспечения имитозащиты в протоколах аутентификации сообщений с доверяющими друг другу участниками  специальный набор символов, который добавляется к… …   Википедия

  • Универсальный код (сжатие данных) — Универсальный код для целых чисел в сжатии данных  префиксный код, который преобразует положительные целые числа в двоичные слова, с дополнительным свойством: при любом истинном распределение вероятностей на целых числах, пока распространение … …   Википедия

  • Objective-C — Класс языка: объектно ориентированный, мультипарадигмальный: рефлексивно ориентированный Появился в: 1986 Автор(ы): Бред Кокс Типизация данных: нестрогая, статическая / динамическая …   Википедия

  • Объектный Си — Objective C Класс языка: объектно ориентированный, мультипарадигмальный: рефлексивно ориентированный Появился в: 1986 г. Автор(ы): Типизация данных: строгая полиморфная, статическая Основные реализации: Apple gcc Испытал …   Википедия

  • Скрытый канал — Скрытый канал  это коммуникационный канал, пересылающий информацию методом, который изначально был для этого не предназначен. Впервые понятие скрытого канала было введено в работе Батлера Лэмпсона «A Note of the Confinement Problem» 10… …   Википедия

  • Digital Signature Standard — DSS, Digital Signature Standard Создатель: NIST Создан: август 1991 Опубликован: 19 мая 1994 Размер ключа: 512 1024 бит Размер подписи: два числа по 160 бит DSS (Digital Signature Standard)  американский стандарт, описывающий Digital Si …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»